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COMMENT 
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AbslracL The kinetics of random sequential adsorption of k-men on a one-dimensional lattice, 
occupied initially by point impurities with a random distribution. is solb'ed exactly. The solution 
of the process on a continuum substrale is also derived from the discrete case. 

A number of processes in physics, chemistry and biology may be modelled by random 
sequential adsorption (RSA) on a lattice [I] .  In this model, particles arrive randomly and 
adsorb irreversibly unless they are in the exclusion zone of previously adsorbed particles. 
In an arbitrary dimension, RSA processes reach a jamming configuration, where further 
adsorption events are impossible. The final coverage as well as the temporal approach to 
the jammed state are of interest. Exact analytical results have been obtained mainly in one 
dimension, where the problem is also known as the parking problem [l-31, and for the 
Bethe lattice L4.51. In these studies, the substrate is usually assumed to be initially empty. 
In a very recent paper [6], the kinetics of RSA of k-mers on the one-dimensional lattice, 
occupied initially by point impurities with a Poissonian distribution, have been investigated 
numerically (mostly for dimers). In this comment we aim to to point out that for the dimer 
case the model has been solved exactly for the dual process A + A -+ 0 with immobile 
reactants [7.81. Moreover, we point out discrepancies between the exact solution and the 
simulation results. We also present an exact analytical solution for the k-mer case with 
arbitrary k and exploit this solution to obtain the solution to the same process on a line. 

In the RSA process, k-mers land uniformly on a lattice with a constant rate, to be taken 
as unity without loss of generality. An adsorption event is successful if all k sites are 
empty. Let P,,,(t) denote the probability that m consecutive lattice sites are empty. The 
rate equations for these probabilities are [9] 

k-1 - = - ( m - k + 1 ) P m ( t ) - 2 C P , + , ( t )  
j = l  dt 

for m > k. The first term in the right-hand side describes adsorption events inside the 
original m-site sequence. The next terms describe desorption events involving sites outside 
the original sequence. 

Since the initial density of point impurities is po and the distribution of impurities is 
random, P,(O) = (1 - PO)". Solving equation (1) subject to these initial conditions yields 
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For an initially empty lattice, po = 0, the solution of equation (2) agrees with the well 
known exact solution 131. 

Similarly, one can write rate equations and solve them exactly for the probabilities P,,,(r) 
with m < k. The most interesting quantity, P I @ ) ,  satisfies the equation 
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which involves only Pk(t) .  Integrating equation (3) we find the coverage p(r ) .  p ( t )  = 
1 - PI ( t ) .  

(1 -Po)' , (4) 1 . I  1 - k- l  

p(r)  = po + k(1 - p0)' 
j 

The jamming coverage, pj, = limr+m p ( t ) ,  for the case of dimer deposition, k = 2, is 
obtained from equation (4), 

pj, = 1 - ( I  - po) exp[-2( 1 - &)I. ( 5 )  

Thus, we reproduced the result first derived in the context of two-particle annihilation 
reaction with immobile reactants [7,8]. From (5 )  one sees that the jamming concentration 
has a minimum p$ = 1 - e-'/2 = 0.8160.. , at po = 1/2. This behaviour is reminiscent 
of the general k-mer deposition problem where the jamming coverage is a non-monotonic 
function of the impurity density (see figure 1). Clearly, in the limit of a full initial state 
po S 1, pj, 1 po. The simulational result of MiloSeviC and Svraki6 exhibits a minimum 
at po 1 0.13. Moreover, the minimal jamming density is found to be p$ P 0.8564. Both 
values differ significantly from the exact values. 
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Figure 1. The jamming coverage versus the initial impurity density. The exact solution of 
equation (4) is plotted for the cases of k = 2, k = 3 and k = 4. 
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The exact k-mer solution can be used to obtain the continuum limit. In this limit, objects 
of unit length are deposited on a one-dimensional line, initially occupied by point defects. 
The initial density of the defects is set to A. To attain this limit we rescale the density 
kpo + A and the time kt + t .  Thus, we take the limit k + 00 of (4), with the rescaled 
density and the rescaled time remaining finite, and obtain the following continuum coverage 
function 

p ( t ) = l d t f  exp[-A-2l  i+f' du-] , -,-U 

U 

In the limit A + do this coverage approaches zero exponentially, pi., 2 Aexp(-A). 
Conversely, when A + 0 the jamming coverage approaches the well known R6nyi number 
pi., = 0.7475. , . . Unlike the lattice case, the coverage decreases monotonically to zero as 
the density of impurities increases. 

Using the exact solution for the density, we study the approach to the jamming limit. 
In the lattice case we find from (4) an exponential approach pi, - p ( t )  - exp(-t). This 
decay was confirmed by the simulation performed by Milolevid and SvrakiC. Interestingly, 
in the continuum case the approach is slower, and from (6) one finds algebraic decay 
pjm - ~ ( t )  - t - ' ,  
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